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Non-linear forced vibrations of thin elastic plates have been investigated by an
asymptotic–numerical method (ANM). Various types of harmonic excitation forces such as
distributed and concentrated are considered. Using the harmonic balance method and
Hamilton’s principle, the equation of motion is converted into an operational formulation.
Based on the finite element method a starting point corresponding to a non-linear solution
associated to a given frequency and amplitude of excitation is computed. Applying
perturbation techniques in the vicinity of this solution, the non-linear governing equation
obtained is transformed into a sequence of linear problems having the same stiffness
matrix. Employing one matrix inversion, a large number of terms of the perturbation series
of the displacement and frequency can be easily computed with a small computation time.
Iterations of this method lead to a powerful path-following technique. Comprehensive
numerical tests for forced vibrations of plates subjected to time-harmonic lateral
excitations are reported.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

There is a growing interest in the large-amplitude vibration problems of plates particularly
in aircraft and aerospace industries. Plate elements, largely composing aerospace vehicle
structures, are often forced to vibrate at large amplitudes during certain phases of flight.
Consequently, non-linear vibration of plates is of considerable interest and a number of
papers have been written on the subject. It is well known, for example, that when a plate is
deflected more than approximately one-half of its thickness, especially if in-plane edge
constraints are present, a significant geometrical non-linearity is induced [1]. This non-
linearity causes an increase of the resonance frequency with the amplitude of vibration.
The non-linear mode shape is amplitude dependent and changes during the period. The
jump phenomenon and its corresponding multivalued region in the non linear frequency–
response curves can be shown. Other phenomena involving harmonic distortion of the
response and internal resonance can also be encountered.
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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The dynamic behaviour of thin plates is governed by non-linear partial differential
equations. Generally, explicit solutions of these equations are not available in the
literature and analytical solutions exist only for few simple cases. The modal analysis and
linearizing techniques are routinely used to examine the dynamic response of plate-like
structures. However, standard procedures are based on the assumption of linearity and
can fail to give accurate results when the amplitude of vibration is large enough to
introduce significant non-linear behaviours. Therefore, it is of crucial interest for
designers, for obvious safety reasons, to know how far the characteristics of real dynamic
responses deviate from those defined via linear theory. Among the different numerical
methods available, the finite element method is undoubtedly the most versatile one. The
significant advantage of the method proposed here is the combination of the finite element
method and perturbations method providing an efficient algorithm for solving the
obtained non-linear problem. The applicability of this method to large-amplitude free
vibrations of plates has been presented in previous works [2, 3].

A significant number of investigations have been conducted on large vibration
amplitudes of plates. A summarization of the knowledge existing in the field of vibrations
of plates has been presented by Leissa in his monograph [4]. The finite element modelling
of laminated and anisotropic plates and shells has been discussed by Reddy in a review
paper [5]. In some other works, Reddy developed and reviewed a refined shear
deformation theory for composite plates [6]. A survey paper summarizing research
activities on the dynamics of composite and sandwich plates during the period 1979–1981
has been presented by Bert [7]. A comprehensive set of corresponding references has been
presented by Sathyamoorthy [8, 9]. The effects of transverse shear deformation, rotatory
inertia, anisotropy, initial imperfections and variable rigidity on the vibration behaviour of
plates are particularly reviewed and discussed in reference [9]. A review of the technical
literature on the acoustic fatigue of beams and plates and some experimental
investigations at higher level of dynamic response have been presented by Wolfe [10].
Recently, a review of the literature and a survey of methodological approaches of
non-linear vibrations of beams and plates have been presented [11]. Attention was
particularly focused on the various analytical, semi-analytical and numerical methods used
in various studies related to the subject. Various works assume the dependence in time to
be harmonic and combine the FEM with linearizing techniques [12–15] or with iterative–
incremental procedures [16, 17]. A reduced basis technique based on FEM was developed
and applied to non-linear vibrations by Noor et al. [18]. A finite element time-domain
modal formulation was developed by Shi and Mei [19], Zhou et al. [20] and Shi et al. [21]
and applied to non-linear vibrations. A hierarchical finite element method has been
developed and applied to linear and non-linear vibrations of plates by Han and Petyt
[22, 23]. Based on this method and continuation procedures, an intensive study of non-
linear vibrations of plates and the effect of internal resonance have been investigated by
Ribeiro and Petyt [24, 25]. The dynamic behaviour of plates at large vibration amplitudes
was examined both theoretically and experimentally by Benamar [26] and Benamar et al.
[27]. The second non-linear mode for various plate aspect ratios at large amplitudes has
been recently analyzed by El Kadiri et al. [28]. Non-linear vibrations of laminated plates
have been investigated by Woo and Nair [29] and by Kant and Kommineni [30] using a
refined theory.

Following the previous reviews and papers, it can be observed that free vibrations of
plates have been largely studied by a wide variety of researchers. Unfortunately, forced
vibrations have not attracted so many workers and only few papers containing numerical
results can be found. Using the single-mode approach and elliptic functions, the non-linear
forced oscillations have been analyzed by Hsu [31] where elliptic and harmonic excitations
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are taken into account. Based on Hamilton’s principle and perturbation procedures, large-
amplitude forced vibrations of beams and plates have been analytically presented by
Rehfield [32]. Free and steady state vibrations of plates using FEM have been studied by
Wellford et al. [33]. Intensive and instructive studies of forced vibrations of structures
based on the finite element method have been presented by Mei et al. [13, 14], Chiang et al.
[15] Shi et al. [19,21] and Zhou et al. [20]. Based on Galerkin’s method and the harmonic-
balance method applied to a single-degree-of-freedom system, some frequency–amplitude
relationships were presented by Dumir and Bhaskar [34] for beams and plates and by
Sherif [35] for unsymmetric sandwich circular plates. A direct numerical integration
method applied to the resulting Duffing equation has been used by Singh et al. [36] to
analyze the forced vibration of antisymmetric rectangular cross-ply plates. The Fourier
series has been used by Teng et al. [37] to study the non-linear forced vibration of
rectangular plates. A semi-analytical method, based on the multi-mode analysis and
continuation procedures, has been developed and applied to forced vibrations of beams at
large amplitudes [38, 39].

The purpose of the present paper is to take advantage of coupling the FEM and
perturbation methods in order to study the non-linear forced vibrations of plates. The
effectiveness of this coupling has been demonstrated using ANM. It has been successfully
used for computing perturbed bifurcation branches of beams by Damil and Potier-Ferry
[40], for post-buckling behaviours of plates and shells by Azrar et al. [41] and extended to
some elastostatic problems by Cochelin [42]. This method has been applied by various
colleagues to different non-linear problems; see for instance Zahrouni et al. [43], Elhage-
Hussein et al. [44] and Daya and Potier-Ferry [45]. Its applicability to non-linear free
vibrations of plates has been presented in previous works [2, 3]. In this paper, various types
of harmonic excitations such as uniformly distributed and concentrated forces are
considered. The use of the harmonic-balance method permits one to obtain operational
formulations. Based on the Newton–Raphson algorithm, a starting point corresponding
to given frequency and amplitude of excitation is obtained. ANM is applied for the
solution in the vicinity of this starting point and a large part of the non-linear solution
path is obtained. The non-linear resonance curves are investigated by iterating the ANM.
Comprehensive numerical tests for forced vibrations of plates with various boundary
conditions are reported.

2. REVIEW OF MATHEMATICAL FORMULATIONS

2.1. BASIC FUNCTIONAL

Let the displacement components of the middle surface of the plate be u; v and w; where
u and v are the in-plane displacements and w the transverse displacement in the x; y and z

directions. Assuming that the plate is thin, the non-linear strain–displacement relation-
ships associated with von Karman plate theory are given by

CL ¼

@u=@x

@v=@y

@u=@y þ @v=@x

8><
>:

9>=
>;; CNL ¼

1
2
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where C ¼ CL þ CNL is the generalized membrane strain and j the bending strain. The
bending strain is assumed to be linear with respect to the displacement (framework with
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moderate rotations). The in-plane forces N and bending moments M are assumed to be
related to the strain and curvature by the constitutive relations

N ¼

Nx

Ny

Nxy

8><
>:

9>=
>; ¼ ½Cm� : C;

M ¼

Mx

My

Mxy

8><
>:

9>=
>; ¼ ½Cb� : j: ð2Þ

in which ½Cm� and ½Cb� are the symmetric stiffness matrices. The more general situation
with the coupling matrix ½Cmb� between membrane and flexure, which is of great concern
for antisymmetric composite laminates, will not be considered here for simplicity. The
elastic strain energy V of plates is given by

V ¼
1

2

Z
O
ðC : ½Cm� : C þ j½Cb� : jÞ dO; ð3Þ

where O is the middle surface of the plate. Since C is quadratic in w; the functional V is of
degree 4 with respect to w: To reduce the degree of the non-linearity, the mixed Hellinger–
Reissner functional is used [2, 3]:

Hðu; v;w;NÞ ¼
Z
O
ðN : C � 1

2
N : ½Cm��1 : Nþ 1

2
j : ½Cb� : jÞ dO; ð4Þ

where the unknown is the mixed (displacement–stress) U ¼t fu; v;w;Ng: Neglecting the
rotatory inertia terms, the kinetic energy is given by

T ¼
1

2

Z
O
r h ð ’uu2 þ ’vv2 þ ’ww2Þ dO; ð5Þ

in which the dot means the differentiation with respect to time, r the mass density and h

the thickness of the plate. Assuming that the plate is excited laterally by the force Fðx; y; tÞ;
the associated virtual work is given by

Wext ¼
Z
O
Fðx; y; tÞ wðx; y; tÞ dO: ð6Þ

2.2. HARMONIC-BALANCE METHODAND OPERATIONAL FORMULATIONS

Because of the fundamental nature of the harmonic excitation and because it has many
practical and theoretical applications, it will be the subject of this paper. One assumes that
the plate is excited by a force in the form

Fðx; y; tÞ ¼ fðx; yÞ cosðotÞ: ð7Þ

As presented in reference [3] for the free vibration case, the displacement vector is assumed
to be in the following form:

uðx; y; tÞ ¼ uðx; yÞ sin2ot; vðx; y; tÞ ¼ vðx; yÞ sin2 ot; wðx; y; tÞ ¼ wðx; yÞ sinot: ð8Þ

in which o is the circular frequency parameter. So, the principle of the harmonic balance
method is to consider the amplitude uðx; yÞ; vðx; yÞ and wðx; yÞ as the main unknowns.
They will be solutions of sort of static system but accounting for inertial terms. For
simplicity, these amplitudes will be designed by the same symbols as original unknowns.
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The insertion of equation (8) into equations (1) and (2) gives the time dependence of the
strain, curvature, and membrane tensors as follows:

CLðx; y; tÞ ¼ cLðx; yÞ sin2ot; CNLðx; y; tÞ ¼ cNLðx; yÞ sin2ot;

jðx; y; tÞ ¼ jðx; yÞ sinot; Nðx; y; tÞ ¼ Nðx; yÞ sin2ot: ð9Þ

A more general time dependence of the displacement vector for transverse and in-plane
excitation is theoretically presented in a previous work [2]. Using Galerkin’s method, the
non-linear differential equation of Duffing type was obtained for transverse excitation and
an equation of Mathieu type was obtained if the in-plane excitation is also considered.

To study the history of the solution corresponding to a period, the initial time is set as
t0 ¼ 0 and the final time t1 ¼ 2p=o.Z 2p=o

0

ðH � T � WextÞ dt ¼
p
o
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4
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: ð10Þ

Using Hamilton’s principle, one gets the governing equation becomes

3

4

Z
O
ðdc : Nþ dN : c � dN : ½Cm��1 : NÞ dOþ

Z
O
dj : ½Cb� : j dO

� o2rh

Z
O
ðu du þ v dv þ w dwÞ dO�

Z
O
fðx; yÞ dwðx; yÞ dO ¼ 0: ð11Þ

This mixed variational principle can be used directly in conjunction with a mixed finite
element method. To obtain a displacement formulation, one can determine the membrane
stress N as a function of the displacement.

Nðx; yÞ ¼ ½Cm�fcðu; v;wÞg ¼ ½Cm�fcLðu; vÞ þ cNLðw;wÞg: ð12Þ

The insertion of the stress N in equation (11) leads to a variational principle of cubic non-
linearity in displacement. After discretization by the finite element method, one gets a non-
linear matrix problem. This problem could be treated by a predictor�corrector method.
The purpose here is to solve the variational equation (11) using an asymptotic�numerical
method.

In view of using an operational notation as presented in references [2, 3], the governing
equation (11) can be written as

hLU; dUi � o2hMU; dUi þ hQðU;UÞ; dUi ¼ hF; dUi; ð13aÞ

in which U ¼t ½u; v;w;N� is the mixed vector and

hLU; dUi ¼
3

4

Z
O
½N : dcL þ ðcL � ½Cm��1 : NÞ : dN� dOþ

Z
O
dj : ½Cb� : k dO; ð13bÞ

hMU; dUi ¼ rh

Z
O
½u du þ v dv þ w dw� dO; ð13cÞ

hQðU;UÞ; dUi ¼
3

4

Z
O
½N : dcNL þ cNL : dN� dO; ð13dÞ

hF; dUi ¼
Z
O
fðx; yÞ dwðx; yÞ dO: ð13eÞ
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The operators L andM are linear andQ is a quadratic one. The matrices corresponding to
the operators L and M are the linear stiffness and the mass matrix respectively. The
formulation hF; dUi represents the virtual work of the harmonic force.

2.3. DEFINITION OF THE APPLIED FORCE

Consider the plate excited by a distributed harmonic uniform force, fðx; yÞ ¼ F d ; and by
a concentrated harmonic force applied at the point ðx0; y0Þ; fðx; yÞ ¼ F cDðx � x0; y � y0Þ;
in which D is the Dirac function and F c and Fd are constants. For these types of
excitations, the formulation (13e) is then given, respectively, by

hF; dUi ¼ F d

Z
O
dwðx; yÞ dO; hF; dUi ¼ Fc

Z
O

Dðx � x0; y � y0Þdwðx; yÞ dO: ð14a;bÞ

In order to use the same amplitude of excitation as in reference [14], the Galerkin-type
process can be used. In the vicinity of the first resonance, the unknown U is assumed to be
proportional to the first natural vibration mode UL1:

U ¼ AUL1 and dU ¼ UL1; ð15Þ

where A is the amplitude parameter. The insertion of equation (15) into equation (13a)
leads to the following non-linear frequency–amplitude relationship:

o2 ¼ o2
L1 þ hQðUL1;UL1Þ; UL1i=hMUL1; UL1iA2 � P0=A; ð16aÞ

o2
L1 ¼ hLUL1; UL1i=hMUL1; UL1i; ð16bÞ

where oL1 is the linear frequency associated with the linear mode UL1 and P0 is the
dimensionless load factor. Following formulations (14a) and (14b), P0 is given for a
harmonic distributed force and for a concentrated harmonic force respectively by

Pd
0 ¼ F d

Z
O

w1ðx; yÞ dO=o2
L1hMUL1; UL1i; ð17aÞ

Pc
0 ¼ F cw1ðx0; y0Þ=o2

L1hMUL1;UL1i ð17bÞ

in which w1ðx; yÞ is the transverse displacement component of the linear mode. These
formulations permitted determination of the relationships between P0 and Fc and F d :
That will be used later to investigate the numerical results.

2.4. ASYMPTOTIC EXPANSIONS

The aim here is to use the ANM to study the non-linear forced vibrations of plates. The
unknowns are the mixed vector U and the non-linear frequency parameter o: One assumes
that ðU0;o0Þ is a solution of the non-linear equation (13a) and that, in the vicinity of this
point, the solution can be represented by power series with respect to a path parameter a

U ¼ U0 þ aU1 þ a2U2 þ a3U3 þ � � � þ ap Up þ � � � ;

o2 ¼ o2
0 þ ao1 þ a2o2 þ a3o3 þ � � � þ apop þ � � � : ð18Þ

in which Up and op are the new unknowns which have to be computed. Introducing
equation (18) into equation (13a) and equating like powers of a; one obtains the set of
linear problems

order 1:

LtU1 ¼ o1 MU0; ð19aÞ
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order 2:

LtU2 ¼ o2 MU0 þ o1 MU1 �QðU1;U1Þ

..

. ð19bÞ

order p:

LtUp ¼ op MU0 þ
Xp�2

r¼0

oðrþ1Þ MUp�r�1 �
Xp�1

r¼1

QðUr; Up�rÞ ð19cÞ

in which the tangent operator Lt is defined as Ltð �Þ ¼ Lð �Þ þ 2QðU0; �Þ: The first equation
corresponds to the linearization of equation (13a) at the starting point ðU0;o0Þ; i.e., the
vector U1 and the coefficient o1 correspond to the tangent of the branch at the starting
point. Notice that at each order p; both Up and op are unknowns and there is one
superfluous unknown in each of these linear problems. So, a solvability equation including
the displacement vector and the frequency parameter following the idea of the arc length
measure is added [42]. The solution procedure followed in this study is presented in
Appendix A.

2.5. NUMERICAL SOLUTION PROCEDURES

Based on the finite element method (FEM), the non-linear forced vibration of square
and rectangular plates with various boundary conditions are analyzed by this method. The
triangular shell elements DKT, which have three nodes and five d.o.f. per node
ðu; v; w; yx; yyÞ are used for the discretization of the plate. Due to the symmetry, only a
quarter of plate is modelled for symmetric modes and a half for the antisymmetric ones.

2.5.1. Linear forced vibration

Before computing the non-linear response curves given by a numerical solution of
equation (13a), it is more convenient to start by the linear solution. The linear forced
vibration of plate is modelled by the following equation obtained by neglecting the non-
linear term in equation (13a):

hLUL; dUi � o2
LhMUL; dUi ¼ hF; dUi: ð20Þ

After the finite element discretization, one obtains the following matrix problem:

½Ke�f %UULg � o2
L½M�f %UULg ¼ fFg; ð21Þ

in which [Ke] is the elastic stiffness matrix, [M] is the mass matrix, f %UULg is the displacement
vector at nodes and {F} is the force vector. This problem has been numerically solved by
using an incremental procedure of the frequency and solving the associated linear
problems. Numerical solution of equation (21) gives linear responses and the associated
linear frequencies corresponding to excitation F. The linear resonance curves can be easily
obtained for various amplitudes of excitation. Neglecting the excitation force, the linear
free vibration of plates is modelled by the eigenvalue problem

½Ke�f %UU1g ¼ o2
L½M�f %UU1g: ð22Þ

Numerical solution of this problem gives linear modes and associated natural frequencies
of vibration of plates.
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2.5.2. Non-linear forced vibration

The non-linear free vibration of plates has been largely studied by this method and
presented in references [2,3]. The associated non-linear frequency–displacement curves are
the backbone curves that bifurcate from the fundamental solution ðU ¼ 0Þ at
eigenfrequencies given by equation (22). The asymptotic developments are done in the
vicinity of the bifurcating point and a succession of linear problems are numerically solved
[2, 3]. While free vibrations lead to bifurcation phenomena, forced vibrations do not. An
exception is the appearance of subharmonics or superharmonics phenomena, which will
not be treated in this study. As there are no bifurcation points in the kind of forced
vibrations that will be studied, a starting point is needed in order to use the perturbation
procedure in its vicinity. This starting point, ðU0; o0Þ; is the solution of the non-linear
problem

LU0 � o2
0 MU0 þQðU0; U0Þ ¼ F : ð23Þ

In this study, this problem has been numerically solved by the Newton–Raphson iterative
procedure for a fixed excitation amplitude F and for a given frequency o0: This allows the
solution U0 corresponding to a given o0 and F : This known solution is used as a starting
point for the asymptotic numerical method. The unknowns Up and op in the polynomial
representation (18) of the non-linear solution (U, o) are given by a recurrent solution of
the linear problems (19) with only one matrix inversion per step. The procedure for
solution at the non-linear responses is presented in Appendix A.

The polynomial solutions (18) coincide almost perfectly inside the radius of convergence
but they diverge out of this zone of validity [2, 3, 40–42]. This limit can be computed
automatically using the following criterion [42]:

aseries ¼ ðejjU1jj=jjUnjjÞ
1=ðn�1Þ; ð24Þ

where e is a small given number.
Note that this simple criterion gives a good order of magnitude of the area of validity of

the solution, whilst requiring almost no computing time. Taking a starting point in the
zone of validity of the solution, one can reapply the ANM and go far in the solution path
[3, 42]. Although, the continued solution has a radius of convergence, the application of
the ANM iteratively allows one to determine a complex non-linear branch.

For the sake of clarity, the path-following procedure used in this study is presented in
Figure 1. For free vibrations, the starting point b1 (U ¼ 0; o ¼ oL) corresponding to
linear free vibrations is given by a numerical solution of the eigenvalue problem (22).
Applying the ANM in the neighbourhood of this point permitted the backbone curve to be
obtained up to the radius of convergence [2]. This limit b2 is easily computed by the
criterion (24). Taking b2 as a starting point and reapplying the ANM permitted, a further
part of the solution to be calculated, also limited by a radius of convergence b3.
This procedure has been followed for non-linear free vibration of plates and presented in
paper [3].

For forced vibration, the starting point f1 corresponding to a given frequency o0 (here
o0 ¼ 0) is obtained by a numerical solution of the non-linear problem (23) using the
Newton–Raphson algorithm. Applying the ANM in the vicinity of f1, part of the solution
(f1–f2) is obtained in one step. Applying iteratively the ANM permitted one to calculate
the non-linear solution (f1 - f2 - f3 - � � � ) up to a desired amplitude. It is well known that,
at the frequency corresponding to the solution f3, the problem has three solutions denoted
as f3, f4 and f6. The polynomial solution given by the ANM remained in the same solution
branch. In order to jump to another branch, a starting point in the desired branch is



f 5

f 6

f 5

f 3

f 2

f 1

b3

b2

b1

_2.0

_1.5

_1.0

_0.5

0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

0.6 0.8 1.0 1.2 1.4 1.6
�/�L

Figure 1. Forced vibrations of plates by the asymptotic numerical method. Path-following techniques used in
the analysis. b1, b2 and b3 are the starting points for free vibrations. fp are starting points for forced vibrations.
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needed. This starting point is computed by the Newton–Raphson algorithm with judicious
initial conditions. The solution corresponding to f4 is computed using opposite
displacements corresponding to f3 as initial conditions. f6 can be computed by taking
ðu ¼ v ¼ w ¼ 0Þ as the initial conditions. The application of the ANM iteratively allows
one to determine non-linear response functions of forced vibrations by a succession of
local asymptotic expansions.

3. RESULTS AND DISCUSSION

Based on the ANM, numerical solutions were performed for non-linear forced
vibrations of square and rectangular isotropic plates with length L and width l: The plate
is modelled with triangular shell elements DKT which have three nodes and five d.o.f. per
node ðu; v;w; yx; yyÞ: For symmetry reasons, only a quarter of the plate has been discretized
with 121 nodes. The boundary conditions concerned in the present study are simply
supported {(u ¼ v ¼ w ¼ yx ¼ 0 at x ¼ 0 and x ¼ L) and (u ¼ v ¼ w ¼ yy ¼ 0 at y ¼ 0
and y ¼ l)} and fully clamped (u ¼ v ¼ w ¼ yx ¼ yy ¼ 0) at all edges. The small parameter
e in equation (24) is set at e ¼ 10�4: Non-linear frequency–response curves associated with
harmonic uniform distributed and concentrated forces are computed. In order to make
comparisons between numerical results available based on the finite element method or on
analytic procedures, the same formulation of the excitation forces as that presented by Mei
et al. [14, 15] is considered, as explained in section 2.3. Frequency ratios for non-linear
vibration of fully clamped and simply supported isotropic square plates under a harmonic
uniformly distributed force are presented in Tables 1 and 2. The case of a concentrated
harmonic force at the centre of simply supported square plates is presented in Table 3. It
may be noticed from these tables that results obtained by the presented method match very
well with those obtained by hierarchical finite element method and continuation procedure
[24]. The non-linear problem was solved by both methods without any simplification. In
comparison with single-mode analysis using elliptic or perturbation solutions, it can be
shown that these predictions are good enough for large amplitudes [14, 31]. For very small
amplitudes, the effect of the second mode affects the solution and some discrepancies are



Table 1

Frequency ratio o=oL of the non-linear forced vibration of fully clamped square plates under

a harmonic uniform distributed force (L=h ¼ 240; P2
0 ¼ 0�2)

Present results (ANM) HFEM [24]y Wmax=h FEM+
Lin. [14]

Elliptic
[14, 31]

Perturbation
[14, 31]

Wmax=h o=oL Wmax=h o=oL

0�2000665 0�21599796 0�2000 0�2432 0�2 0�1033 0�1200 0�1227
200036 1�4329863 �0�2072 1�4275 �0�2 1�4183 1�4195 1�4195
0�4003584 0�75314512 } } 0�4 0�7372 0�7483 0�7484

�0�400076 1�2505342 } } �0�4 1�2426 1�2490 1�2491
�0�6001276 0�89486919 0�6008 0�8971 0�6 0�8746 0�8951 0�8956
�0�600051 1�2092921 �0�59011 1�2120 �0�6 1�1966 1�2117 1�2119
0�8001071 0�99116717 } } 0�8 0�9617 0�9941 0�9954

�0�800101 1�2148796 } } �0�8 1�1938 1�2203 1�2210
1�00009 1�0768604 1�0013 1�0803 1 1�0362 1�0822 1�0845

�1�00005 1�2457381 �0�9952 1�2475 �1 1�2140 1�2540 1�2555
yHierarchical Finite Element Method and continuation procedure.

Table 2

Frequency ratio o=oL of the non-linear forced vibration of simply supported square plates

under a harmonic uniform distributed force (L=h ¼ 240; Pd
0 ¼ 0�2)

Wmax=h Present result (ANM) Wmax=h Elliptic
[14, 31]

Perturbation
[14, 31]

FEM+
Lin. [14]

0�20010024 0�23742884 0�2 0�1944 0�1987 0�1643
�0�20009037 1�4333909 �0�02 1�4281 1�4281 1�4238
0�40032886 0�81547934 0�4 0�8102 0�8111 0�7800

�0�40004806 1�2880868 �0�4 1�2874 1�2876 1�2682
0�60045967 1�0145738 0�6 1�0084 1�0110 0�9544

�0�60003548 1�2990543 �0�6 1�2983 1�2995 1�2560
0�80038172 1�1800401 0�8 1�1703 1�1755 1�0886

�0�80015950 1�3719442 �0�8 1�3686 1�3718 1�2981
1�0005105 1�3436439 1 1�3283 1�3369 1�2171

�1�0001737 1�4809742 �1 1�4726 1�4789 1�3717
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shown. The difference is more pronounced with numerical results obtained by FE and
linearizing procedure [14]. Non-linear frequency response curves in the vicinity of the first
mode of a fully clamped square plate under concentrated harmonic forces at the centre
ðPc

0 ¼ 0�1;Pc
0 ¼ 0�2Þ are shown in Figure 2. The backbone curve for free vibration is also

plotted in this figure. Continuation steps of the ANM are presented in order to show the
path-following procedure necessary for the analysis. It can be shown that several steps are
needed around the limit point or the bifurcation point, but out of this zone the length of
the steps increases and a large part of the solution is obtained by few steps. Linear and
non-linear frequency response curves of a fully clamped square plate under harmonic
distributed forces (Pd

0 ¼ 0�1; Pd
0 ¼ 0�2) are plotted in Figure 3. It can be seen clearly, as it

was well known, that the non-linear analysis is needed for large amplitudes. The frequency



Table 3

Frequency ratio o=oL of simply supported square plates under a concentrated harmonic

force at the centre (L=h ¼ 240; Pc
0 ¼ 0�025 p2)

Wmax=h Present
result (MAN)

Wmax=h Elliptic
[14, 31]

Perturbation
[14, 31]

FEM+
Lin. [14]

�0�20006836 1�4572162 �0�2 1�5078 1�5077 1�4957
0�40000090 0�69986917 0�4 0�7342 0�7356 0�7129

�0�40001674 1�3385672 �0�4 1�3320 1�3322 1�3093
0�60017610 0�97157014 0�6 0�9688 0�9717 0�9212

�0�60004274 1�3624560 �0�6 1�3280 1�3291 1�2849
0�80006483 1�1691112 0�8 1�1449 1�1504 1�0698

�0�80013709 1�4475898 �0�8 1�3898 1�3929 1�3209
1�0002160 1�3544835 1 1�3103 1�3193 1�2068

�1�0000771 1�5676149 �1 1�4885 1�4946 1�3910
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Figure 2. Non-linear frequency response function curves in the vicinity of the first mode of a fully clamped
square plate under concentrated harmonic forces at the centre.
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ratios o=oL for fully clamped and simply supported square plates under concentrated
harmonic forces at the centre are presented in Figure 4. The response functions for simply
supported square and rectangular plates under a distributed harmonic force and the
associated backbone curves are given in Figure 5. It appears clearly that the simply
supported boundary conditions yield a larger non-linear response than the clamped ones.
The non-linearity associated with rectangular plates is more pronounced than that
associated with square plates. The same results were presented and discussed by Mei and
co-workers using FEM and the iterative process for isotropic and composite plates
[14, 15].

Non-linear deflection shapes of a fully clamped square plate under a harmonic
distributed force (Pd

0 ¼ 0�2) corresponding to various frequencies are presented in
Figure 6. Figure 7 is added in order to show clearly the correspondence between the
deflection shapes in Figure 6 and the frequency. Frequencies associated with points on
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Figure 7 indicated by (a,b,c, 1,2,3) correspond to deflection shapes (a,b,c, 1,2,3) in
Figure 6. Considering a decreasing frequency procedure, the jumping effect is produced
from the limit point c to a new solution 1. The evolution of the shape deflection of the
plate can be seen clearly in Figure 6. Frequency ratios for non-linear vibrations,
corresponding to the first resonance, of a fully clamped rectangular plate (L=l ¼ 2) under a
concentrated force at the centre (Pc

0 ¼ 0�1) are presented in Table 4. In Figure 8, the
frequency–response curves are presented, corresponding to large frequency ranges
involving the first and the third resonance of a fully clamped rectangular plate under a
harmonic concentrated force. One can see the connection between the first and the third
resonance. These curves are obtained using an iterative process of the ANM. In this way,
any resonance curve can be automatically computed at any desired range of amplitudes.



�/  �L

Square

Rectangular

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 2.42.22.01.81.61.41.21.00.80.60.40.2

 = 
 =

P  do
P  do 0

0.2

W
ce

nt
re

 /h

Figure 5. Free and forced vibrations of simply supported square and rectangular plates ðL=l ¼ 2Þ under a
harmonic distributed force Pd

0 ¼ 0:2:

2-3
1

c b a

x/L

Linear

Linear

W
(x

,1
/2

)/
W

ce
nt

re

_0.4
_0.6
_0.8
_1.0

_0.2

0.2

0

0.4

1.0

0.8

0.6

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 6. Non-linear forced vibration deflection shapes of a fully clamped square plate under a harmonic
distributed force (Pd

0 ¼ 1) corresponding to decreasing frequencies. (a) o=oL ¼ 2�5; Wcentre=h ¼ �0�25361104; (b)
o=oL ¼ 2; Wcentre=h ¼ �0�38451844; (c) o=oL ¼ 1�5301950; Wcentre=h ¼ �1�1239271; (1) o=oL ¼ 1�5292688;
Wcentre=h ¼ 2�2324208; (2) o=oL ¼ 1; Wcentre=h ¼ 1�389879; (3) o=oL ¼ 0:5; Wcentre=h ¼ 0�9127738:

FORCES PLATE VIBRATION 669
4. CONCLUSION

An asymptotic–numerical method (ANM) to solve non-linear forced vibration of plates
submitted to time-harmonic lateral excitations has been developed. Based on Von Karman
plate theory, the harmonic balance method and Hamilton’s principle, the dynamic
problem of plate vibration was transformed into a static one. Using the finite element
method and the Newton–Raphson algorithm, a starting point corresponding to the
solution associated with a given frequency and amplitude of excitation was computed. The
ANM was applied in the vicinity of this solution and a large part of the non-linear solution
was obtained by solving a sequence of linear problems having the same stiffness matrix.
Iteration of this method, leading to a path-following technique, permitted one to obtain
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Figure 7. Forced vibrations of a fully clamped square plates under a harmonic distributed force Pd
0 ¼ 1:

Table 4

Frequency ratio o=oL of a fully clamped rectangular plate under a concentrated harmonic

force at the centre (L=l ¼ 2; Pc
0 ¼ 0�1)

Wcentre=h o=oL Wcentre=h o=oL

�0�2000476 1�179367 0�2001011 0�5682657
�0�4000036 1�132928 0�4002796 0�8726742
�0�600037 1�139342 0�6000040 0�9694668
�0�800116 1�171764 0�8003387 1�044560
�1�000079 1�221881 1�000086 1�119244
�1�500175 1�400587 1�500104 1�330404
�2�000504 1�628145 2�000592 1�575440
�2�500929 1�882834 2�500329 1�840947
�3�001445 2�152953 3�000222 2�118186
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Figure 8. Forced vibrations of a fully clamped rectangular plate under a harmonic concentrated force at the
centre (L=l ¼ 2; L=h ¼ 240).
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the non-linear resonance curves at any desired range of amplitudes with a small
computation time. Numerical results for non-linear frequency and non-linear displace-
ments are presented and compared for various types of excitations and plate boundary
conditions. Presented results agree well with results available in the literature. One can
wonder if a single-mode analysis is sufficient to account for large-amplitude vibrations.
The latter method permitted one to obtain amplitude–frequency response curves in the
vicinity of the first resonance particularly when the mode interactions are very small and
the excitation is uniformly distributed or concentrated at the centre. But, this estimation
loses its accuracy when the effect of higher modes is consequent. Moreover, it did not give
any information about the non-linear effects on the displacement and the stress fields. This
additional information has been obtained by the present method with a small computation
time.

The study of large-amplitude vibrations of structures involving geometrical non-
linearities requires efficient non-linear procedures permitting one to obtain not only the
non-linear frequency but also the non-linear response of the structure at any desired point
and subjected to various types of excitations. This method very well fitted these objectives
and several examples of application have been described to illustrate the power of this
method. Other related topics such as internal resonance and non-linear damped vibrations
of thin elastic structures may be investigated using this technique. It can be incorporated in
any finite element code in order to study the non-linear vibration of more complex
structures with various types of excitations.

REFERENCES

1. R. G. White 1971 Journal of Sound and Vibration 16, 255–267. Effects of non-linearity due to
large deflections in the resonance testing of structures.

2. L. Azrar, B. Cochelin, N. Damil and M. Potier-Ferry 1998 Structural Dynamic Systems,
Computational Techniques and Optimization, Vol. 7, 103–141. London: Gordon & Breach
Publishers. An Asymptotic-Numerical Method for non-linear vibrations of elastic structures.

3. L. Azrar, R. Benamar and M. Potier-Ferry 1999 Journal of Sound and Vibration 220,
695–727. An Asymptotic–Numerical Method for large amplitude free vibrations of thin elastic
plates.

4. A. W. Leissa 1969 Vibrations of Plates (NASA SP-160). Washington: US Government printing
office.

5. J. N. Reddy 1981 Shock and Vibration Digest 13, 3–12. Finite element modeling of layered,
anisotropic composite plates and shells: a review and recent research.

6. J. N. Reddy 1990 Shock and Vibration Digest 22, 3–17. A review of refined theories of laminated
composite plates.

7. C. W. Bert 1982 Shock and Vibration Digest 14, 17–34. Research on dynamics of composite and
sandwich plates, 1979–81.

8. M. Sathyamoorthy 1983 Shock and Vibration Digest 15, 3–16. Non-linear vibrations of plates,
a review.

9. M. Sathyamoorthy 1987 Applied Mechanics Review 40, 1553–1561. Non-linear vibration
analysis of plates: a review and survey of current developments.

10. H. Wolfe 1995 Ph.D. Thesis, University of Southampton, UK. An experimental investigation of
non linear behaviour of beams and plates excited to high levels of dynamic response.

11. L. Azrar, R. Benamar and H. Wolfe Unpublished manuscript. Non-linear vibration analysis
of beams and plates. A review of the literature and a survey of methodological approaches.

12. C. Y. Chia 1980 Non-linear Analysis of Plates. New York: Mc-Graw Hill.
13. C. Mei 1973 Computers and Structures 3, 163–174. Finite element displacement method for large

amplitude free flexural vibrations of beams and plates.
14. C. Mei and K. Decha-Umphai 1985 American Institute of Aeronautics and Astronautics Journal

23, 1104–1110. A finite element method for non-linear forced vibrations of rectangular plates.



L. AZRAR ET AL.672
15. C. K. Chiang, C. Mei and C. E. Gray Jr 1991 Journal of Vibration and Acoustics 113, 309–315.
Finite element large-amplitude free and forced vibrations of rectangular thin composite plates.

16. J. N. Reddy and C. L. Huang 1981 Journal of Sound and Vibration 79, 387–396. Large
amplitude free vibrations of annular plates of varying thickness.

17. S. L. Lau, Y. K. Cheung and S. Y. Wu 1984 Journal of Applied Mechanics 51, 837–844.
Non-linear vibration of thin elastic plates. Part I: generalised incremental Hamilton’s principle
and finite element formulation.

18. A.K. Noor, C.M. Andersen and J.M. Peters 1993 Computer Methods Applied Mechanics and
Engineering 103, 175–186. Reduced basis technique for non-linear vibration analysis of
composite panels.

19. Y. Shi and C. Mei 1996 Journal of Sound and Vibration 193, 453–464. A finite element time
domain modal formulation for large amplitude free vibrations of beams and plates.

20. R. C. Zhou, D.Y. Xue and C. Mei 1994 American Institute of Aeronautics and Astronautics
Journal 32, 2044–2052. Finite element time domain-modal formulation for non-linear flutter of
composite panels.

21. Y. Shi, R. Y. Y. Lee and C. Mei 1997 American Institute of Aeronautics and Astronautics
Journal 35, 159–166. Finite element method for non-linear free vibrations of composite plates.

22. W. Han and M. Petyt 1997 Computers and Structures 63, 295–308. Geometrically non-linear
vibration analysis of thin rectangular plates using the hierarchical finite element method}I: The
fundamental mode of isotropic plates.

23. W. Han and M. Petyt 1997 Computers and Structures 63, 309–318. Geometrically non-linear
vibration analysis of thin rectangular plates using the hierarchical finite element method}II: 1st
mode of laminated plates and higher mode of isotropic and laminated plates.

24. P. Ribeiro and M. Petyt 1999 International Journal of Mechanical Sciences 41, 437–459.
Non-linear vibration of plates by the hierarchical finite element and continuation methods.

25. P. Ribeiro and M. Petyt 2000 International Journal of Non-linear Mechanics 35, 263–278.
Non-linear free vibration of isotropic plates with internal resonance.

26. R. Benamar 1990, Ph. D. Thesis, University of Southampton. Non-linear dynamic behaviour of
fully clamped beams and rectangular isotropic and laminated plates.

27. R. Benamar, M.M.K. Bennouna and R.G. White 1993 Journal of Sound and Vibration 164,
399–424. The effects of large vibration amplitudes on the mode shapes and natural frequencies of
thin elastic structures. Part II: fully clamped rectangular plates.

28. M. El Kadiri, R. Benamar and R.G. White 1999 Journal of Sound and Vibration, 228,
333–358. The non-linear free vibration of fully clamped rectangular plates: Second non-linear
mode for various plate aspect ratios.

29. J. Woo and S. Nair 1992 American Institute of Aeronautics and Astronautics Journal 30,
180–188. Non-linear vibrations of rectangular laminated thin plates.

30. T. Kant and J. R. Kommineni 1994 Computers and Structures 50, 123–134. Large amplitude
free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and
C8 finite elements.

31. C. S. Hsu 1960 Quarterly Applied Mathematics 17, 393–407. On the application of elliptic
functions in non-linear forced oscillations.

32. L. W. Reh¢eld 1974 American Institute of Aeronautics and Astronautics Journal 12, 388–390.
Large amplitude forced vibrations of elastic structures.

33. L. C. Wellford Jr., G.M. Dib and W. Mindle 1980 Earthquake Engineering and Structural
Dynamics 8, 97–115. Free and steady state vibration of non-linear structures using finite element
non-linear eigenvalue technique.

34. P. C. Dumir and A. Bhaskar 1988 Journal of Sound and Vibration 123, 517–527. Some
erroneous finite element formulations of non-linear vibrations of beams and plates.

35. H. A. Sherif 1995 Journal of Sound and Vibration 182, 495–503. Non-linear forced flexural
vibrations of clamped circular unsymmetrical sandwich plates.

36. G. Singh, G. Venkateswara Rao and N. G. R. Iyengar 1992 Composite Structures 20,
185–194. Non-linear forced vibrations of antisymmetric rectangular cross-ply plates.

37. T. L. Teng, C.C. Liang and C.C. Liao 1999 computational mechanics 23, 1–7. Non-linear forced
vibration analysis of rectangular plates by the Fourier series method.

38. L. Azrar, R. Benamar and R.G. White 1999 Journal of Sound and Vibration 224, 183–207. A
semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at
large vibration amplitudes. Part I: general theory and application to the single mode approach to
free and forced vibration analysis.



FORCES PLATE VIBRATION 673
39. L. Azrar, R. Benamar and R. G. White Journal of Sound and Vibration. A semi-analytical
approach to the non-linear dynamic response problem of beams at large vibration amplitudes.
Part II: Multi-mode approach to the steady state forced periodic response. Accepted for
publication.

40. N. Damil and M. Potier-Ferry 1990 International Journal of Engineering Sciences, 28,
943–957. A new method to compute perturbed bifurcation: application to the buckling of
imperfect elastic structures.

41. L. Azrar, B. Cochelin, N. Damil and Potier-Ferry 1993 International Journal of Numerical
Methods and Engineering 36, 1251–1277. An Asymptotic Numerical Method to compute the
post-buckling behaviour of elastic plates and shells.

42. B. Cochelin 1994 Computers and Structures 53, 1181–1192. A path-following technique via an
Asymptotic–Numerical Method.

43. H. Zahrouni, B. Cochelin and M. Potier-Ferry 1999 Computer Methods in Applied
Mechanics and Engineering 175, 71–85. Computing finite rotations of shells by an Asymptotic
Numerical Method.

44. A. Elhage-Hussein, M. Potier-Ferry and N. Damil 2000 International Journal of Solids and
Structures 37, 6981–7001. A numerical continuation method based on Pad!ee approximants.

45. E. M. Daya and M. Potier-Ferry 2001 Computers and Structures 79, 533–541. A numerical
method for non-linear eigenvalue problems. Application to vibrations of viscoelastic
structures.

APPENDIX A

The path parameter a in the series (18), identified as the projection of the displacement
increment ðUðaÞ �U0Þ and the frequency increment (oðaÞ � o0) on the tangent vector
ðU1; o1Þ [42], can be written as

a ¼ 1=s2fhU�U0;U1i þ ðo� o0Þo1g; ðA:1Þ

where h � � � i is the Euclidean scalar product and s is a scaling parameter which
corresponds to the length of the tangent vector ðU1; o1Þ: Introducing series (18) into
equation (A.1) and equating like powers of a one obtains the set of single equations

order 1 : hU1; U1i þ o1o1 ¼ s2;

order 2 : hU1; U2i þ o1o2 ¼ 0;

order 3 : hU1; U3i þ o1o3 ¼ 0;

..

.

order p : hU1; Upi þ o1op ¼ 0:

ðA:2Þ

All vectors Up and coefficients op of the series (18) can be determined by successively
solving the systems of equations (19) and (A.2) at each order p.

By recalling that the unknown vectors Up are mixed (displacement–stress), and
following the same manipulation presented in papers [2, 3, 40–42], are returns to a pure
displacement formulation. After discretization by FE, are obtains the matrix problem:

½KtðU0Þ�fUpg ¼ opfFg þ fFNL
p g; hU1; Upi þ o1op ¼ 0; ðA:3Þ

where ½KtðU0Þ� is the tangent stiffness matrix at the starting point ðU0; o0Þ; {F} is the
column vector {[M]{U0}}, and fFNL

p g represents the remaining part of the right side of
equations (19) [3, 41]. Problem (A.3) is solved in the following steps:

At order 1:
Step 1: Solve ½KtðU0Þ�gðUL

1 Þ ¼ fFg;
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Step 2: Compute o1 ¼ �s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hUL

1 ; U
L
1 i þ 1

q
; U1 ¼ o1 U

L
1 ;

Step 3: Compute Nð1Þ ¼ ½Cm�fcLðU1Þ þ 2cNLðU0; U1Þg;

At order p:
Step 1: Solve ½KtðU0Þ�fUNL

p g ¼ fFNL
p g;

Step 2: Compute op ¼ ðhU1; U
NL
p i=s2Þ o1; Up ¼ ðop=o1ÞU1 þUNL

p ;
Step 3: Compute NðpÞ ¼ ½Cm�½cLðUpÞ þ 2cNLðU0; UpÞ þ

Pp�1
r¼1 cNLðUr; Up�rÞ�:
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